Солнечное отопление в ряде регионов экономически целесообразно, но немногие люди понимают концепию использования и запасания солнечной энергии.
Содержание
- Концепция использования солнечной энергии
- Дублирующая система отопления
- Объединение систем
- Система со 100% солнечным отоплением
Концепция использования солнечной энергии
Одним из вопросов, наиболее часто задаваемых людьми, которые хотят понять использование солнечной энергии для отопления (или другой цели), является вопрос: «Что делать, когда солнце не светит?» Поняв концепцию запасания энергии, они задают следующий вопрос: «Что делать, когда в аккумуляторе не остается больше тепловой энергии?»
Вопрос закономерен, и необходимость в дублирующей, часто традиционной системе является серьезным камнем преткновения для широкого принятия солнечной энергии в качестве альтернативы существующим источникам энергии.
Если мощности системы солнечного отопления недостаточно, чтобы продержать здание в течение периода холодной, пасмурной погоды, то последствия, даже один раз за зиму, могут быть достаточно серьезными, заставляющими предусматривать в качестве дублирующей обычную полномерную систему отопления.
Дублирующая система отопления
Большинство зданий, отапливаемых солнечной энергией, нуждаются в полномерной дублирующей системе. В настоящее время в большинстве районов солнечная энергия должна рассматриваться в качестве средства снижения расхода традиционных видов энергии, а не как полный их заменитель.
Выбор дублирующей системы
Обычные отопители являются подходящими дублерами, но существует немало и других альтернатив, например:
- камины;
- дровяные печи;
- дровяные калориферы.
Если вспомогательная система покрывает лишь небольшой процент всей нагрузки, то есть смысл использовать электроотопление, несмотря на то, что оно требует производства значительного количества энергии на электростанции, которая затем преобразуется в тепло для обогрева (на электростанции расходуется 10500–13700 кДж для производства 1 кВт*ч тепловой энергии в здании).
В большинстве случаев электрообогреватель будет дешевле нефтяной или газовой печи, а сравнительно небольшое количество электроэнергии, необходимой для обогрева здания, может оправдать его применение. Кроме того, электронагреватель — менее материалоемкое устройство благодаря сравнительно небольшому количеству материала (по сравнению с отопителем), идущему на изготовление электроспиралей.
В новом строительстве отопительные системы можно рассчитывать на использование более низких температур, например, путем удлинения трубчато-ребристых радиаторов с горячей водой, увеличения размеров радиационных панелей или увеличения объема воздуха более низкой температуры.
Проектировщики чаще всего останавливают свой выбор на отоплении помещения с помощью теплого воздуха или на применении увеличенных радиационных панелей.
В системе воздушного отопления лучше всего используется низкотемпературное запасенное тепло.
Лучистые отопительные панели имеют длительное запаздывание (между включением системы и нагревом воздушного пространства) и обычно требуют более высоких рабочих температур теплоносителя, чем системы с горячим воздухом. Поэтому тепло из аккумулирующего устройства не используется в полной мере при более низких температурах, которые приемлемы для систем с теплым воздухом, да и общий КПД такой системы ниже.
Объединение систем
Превышение размеров системы из радиационных панелей для получения результатов, аналогичных результатам при использовании воздуха, может повлечь за собой значительные дополнительные затраты.
Для повышения общего КПД системы (солнечного отопления и вспомогательной дублирующей системы) и одновременного снижения общих затрат путем ликвидации простоя составных частей, многие проектировщики избрали путь интегрирования солнечного коллектора и аккумулятора со вспомогательной системой.
Общими являются такие составные элементы, как:
- вентиляторы;
- насосы;
- теплообменники;
- органы управления;
- трубы;
- воздуховоды.
На рисунках статьи Системное проектирование показаны различные схемы таких систем.
Ловушкой при проектировании стыковых элементов между системами является увеличение органов управления и движущихся частей, что повышает вероятность механических поломок. Искушение увеличить на 1–2% КПД путем добавления еще одного устройства на стыке систем является почти непреодолимым и может быть наиболее распространенной причиной выхода из строя системы солнечного отопления.
Обычно вспомогательный обогреватель не должен нагревать отсек аккумулятора солнечного тепла. Если это происходит, то фаза сбора солнечного тепла будет менее эффективной, так как почти всегда этот процесс будет протекать при более высоких температурах.
В других системах снижение температуры аккумулятора благодаря использованию тепла зданием повышает общий КПД системы. Причины других недостатков этой схемы объясняются большой потерей тепла из аккумулятора из-за его постоянно высоких температур.
В системах солнечного отопления, в которых вспомогательное оборудование не нагревает аккумулятор, последний будет терять значительно меньше тепла при отсутствии солнца в течение нескольких дней. Даже в спроектированных таким путем системах потери тепла из контейнера составляют 5–20% всего тепла, поглощенного системой солнечного отопления.
С аккумулятором, обогреваемом вспомогательным оборудованием, потеря тепла будет значительно выше и может быть оправдана только в том случае, если контейнер аккумулятора находится внутри отапливаемого помещения здания.
Система со 100% солнечным отоплением
Предположим, что нам захотелось сделать систему солнечного отопления достаточно большой, чтобы обеспечить теплом помещение в наиболее неблагоприятных условиях. Поскольку сочетание очень холодных дней и долгих периодов облачной погоды случается редко, то дополнительные размеры солнечной энергетической установки (коллектор и аккумулятор), которые потребуются для этих случаев, обойдутся слишком дорого при сравнительно небольшой экономии топлива. Кроме того, большую часть времени система будет работать при мощности ниже номинальной.
Система солнечного отопления, рассчитанная на обеспечение 50% отопительной нагрузки, может дать достаточно тепла только на 1 день очень холодной погоды. При удвоении размеров солнечной системы дом будет обеспечен теплом в течение 2 холодных пасмурных дней.
Для периодов более 2 дней последующее увеличение размеров будет столь же неоправданным, как и предыдущее. Кроме того, будут периоды мягкой погоды, когда второе увеличение не потребуется.
Теперь, если увеличить площадь коллекторов отопительной системы еще в 1,5 раза, чтобы продержаться 3 холодных и облачных дня, то теоретически она будет достаточной для обеспечения 1/2 всей потребности дома в течение зимы. Но, разумеется, на практике этого может не быть, поскольку случается иногда 4 (и более) дня подряд холодной облачной погоды. Чтобы учесть этот 4-ый день, нам потребуется система солнечного отопления, которая теоретически может собрать в 2 раза больше тепла, чем это необходимо зданию в течение отопительного сезона.
Ясно, что холодные и облачные периоды могут быть более продолжительными, чем предусмотрено в проекте системы солнечного отопления. Чем больше коллектор, тем менее интенсивно используется каждое дополнительное приращение его размеров, тем меньше энергии экономится на единицу площади коллектора и тем меньше окупаемость капиталовложений на каждую дополнительную единицу площади.
Тем не менее, предпринимались смелые попытки накопить достаточное количество тепловой энергии солнечного излучения для покрытия всей потребности в отоплении и отказаться от вспомогательной системы отопления. За редким исключением таких систем, как солнечный дом Г. Хэя, долговременное аккумулирование тепла является, пожалуй, единственной альтернативой вспомогательной системе.
Г. Томасон близко подошел к 100%-ному солнечному отоплению в своем первом доме в Вашингтоне; только 5% отопительной нагрузки покрывалось за счет стандартного отопителя на жидком топливе.
Так как КПД солнечного коллектора существенно возрастает, если эксплуатировать его при низких температурах, то отопительная система должна рассчитываться на использование как можно более низких температур — даже на уровне 24–27°C.
Одно из достоинств системы Томасона заключается в том, что она продолжает извлекать полезное тепло из аккумулятора при температурах, почти равных температуре помещения.
Комментарии