Ветроэнергетика — отрасль энергетики, специализирующаяся на использовании энергии ветра — кинетической энергии воздушных масс в атмосфере.
Энергию ветра относят к возобновляемым видам энергии, так как она является следствием деятельности солнца. Ветроэнергетика является бурно развивающейся отраслью, так в конце 2009 года общая установленная мощность всех ветрогенераторов составила 157 гигаватт, увеличившись вшестеро с 2000 года.
Одним из лидеров мировой ветроэнергетики как по размерам имеющихся ветряных электростанций, так и по темпам роста установленных мощностей являются США. По данным Американской ассоциации ветряной энергетики (AWEA) к 2008 году США вышли на первое место в мире по мощностям построенных ветроэлектростанций. В 2008 году в США установленные мощности ветроэлектростанций выросли на 50 %. За год было построено 8358 МВт новых ветроэлектростанций. На конец 2008 года суммарные мощности ветроэлектростанций США составляли 25170 МВт.
История использования энергии ветра
Ветряные мельницы использовались для размола зерна в Персии уже в 200-м году до н.э. Мельницы такого типа были распространены в исламском мире и в XIII веке принесены в Европу крестоносцами.
В XVI веке в городах Европы начинают строить водонасосные станции с использованием гидродвигателя и ветряной мельницы. В Нидерландах многочисленные ветряные мельницы откачивали воду с земель, ограждённых дамбами. Отвоёванные у моря земли использовались в сельском хозяйстве.
Ветряные мельницы, производящие электричество, были изобретены в XIX веке в Дании. Там в 1890 г. была построена первая ветроэлектростанция, а к 1908 г. насчитывалось уже 72 ветроэлектростанции мощностью от 5 до 25 кВт. Крупнейшие из них имели высоту башни 24 м и четырёхлопастные роторы диаметром 23 м.
В период с 1940-х по 1970-е годы ветроэнергетика переживает период упадка в связи с интенсивным развитием передающих и распределительных сетей, дававших независимое от погоды энергоснабжение за умеренные деньги. Возрождение интереса к ветроэнергетике началось в 1980-х, когда в Калифорнии начали предоставляться налоговые льготы для экологически чистой энергии.
Современные методы генерации электроэнергии из энергии ветра
Современные ветрогенераторы работают при скоростях ветра 3–25 м/с.
Мощность ветрогенератора зависит от площади, заметаемой лопастями генератора. Например, турбины мощностью 3 МВт производства датской фирмы Vestas имеют общую высоту 115 метров, высоту башни 70 метров и диаметр лопастей 90 метров.
Наибольшее распространение в мире получила конструкция ветрогенератора с тремя лопастями и горизонтальной осью вращения, хотя кое-где ещё встречаются и двухлопастные.
Экономические аспекты ветроэнергетики
Экономия топлива
Ветрогенераторы практически не потребляют ископаемого топлива. Работа ветрогенератора мощностью 1 МВт за 20 лет эксплуатации позволяет сэкономить примерно 29 тыс. тонн угля или 92 тыс. баррелей нефти.
Себестоимость электроэнергии
Себестоимость электричества, производимого ветрогенераторами, зависит от скорости ветра и составляет по американским данным $0.026–0.048/кВт*ч. При удвоении установленных мощностей ветрогенерации себестоимость производимого электричества падает на 15%.
Перспективы развития малой ветроэнергетики на примере США
По данным AWEA в 2004 году в США было установлено около 30 МВт малых ветрогенераторов. В 2006 году было продано 6807 малых ветрогенераторов. Их суммарная мощность 17543 кВт, а стоимость $56,082,850, что составляет примерно $3200 за кВт мощности.
В 2006 году 51 % малых ветрогенераторов было установлено в сельских домах, 19 % на сельскохозяйственных фермах, 10 % на предприятиях малого бизнеса, 10 % в школах и общественных зданиях.
Наиболее перспективными регионами для развития малой ветроэнергетики считаются регионы со стоимостью электроэнергии более $0,1 за кВт·ч. Себестоимость электроэнергии, производимой малыми ветрогенераторами в 2006 г. в США составляла $0,10–$0,11 за кВт·ч. AWEA ожидает, что в ближайшие 5 лет себестоимость снизится до $0,07 за кВт·ч.
AWEA прогнозирует, что к 2020 году суммарная мощность малой ветроэнергетики США вырастет до 50 тыс. МВт, что составит около 3 % от суммарных мощностей страны. Ветрогенераторы будут установлены в 15 млн. домов и в 1 млн. предприятий малого бизнеса. В индустрии малой ветроэнергетики будут заняты 10 тыс. человек. Они ежегодно будут производить продукции и услуг на сумму более чем $1 млрд.
Экологические аспекты ветроэнергетики
Выбросы в атмосферу
Ветрогенератор мощностью 1 МВт сокращает ежегодные выбросы в атмосферу 1800 тонн СО2, 9 тонн SO2, 4 тонн оксидов азота. По оценкам Global Wind Energy Council к 2050 году мировая ветроэнергетика позволит сократить ежегодные выбросы СО2 на 1,5 миллиарда тонн.
Шум
Ветряные энергетические установки производят две разновидности шума:
- механический шум — шум от работы механических и электрических компонентов (для современных ветроустановок практически отсутствует, но является значительным в ветроустановках старых моделей);
- аэродинамический шум — шум от взаимодействия ветрового потока с лопастями установки (усиливается при прохождении лопасти мимо башни ветроустановки).
В настоящее время при определении уровня шума от ветроустановок пользуются только расчётными методами. Метод непосредственных измерений уровня шума не даёт информации о шумности ветроустановки, так как эффективное отделение шума ветроустановки от шума ветра в данный момент невозможно.
Законы, принятые в Великобритании, Германии, Нидерландах и Дании, ограничивают уровень шума от работающей ветряной энергетической установки до 45 дБ в дневное время и до 35 дБ ночью.
Радиопомехи
Металлические сооружения ветроустановки, особенно элементы в лопастях, могут вызвать значительные помехи в приёме радиосигнала. Чем крупнее ветроустановка, тем большие помехи она может создавать.
Комментарии